
Building and operating a 
high-performance platform 
for a retail organisation

By Josh Roberts 
Analyst at BJSS

When it comes to global retail, a high-performing platform is more than just a technical achievement – it’s a competitive 
necessity. This article dives into how we built a resilient, scalable, and continuously deployable platform, balancing automation 
with cultural transformation. 

We explore the strategies, challenges, and breakthroughs that enabled us to support thousands of deployments with minimal 
disruption. But technology alone isn’t enough – success hinged on shifting mindsets and reimagining ways of working.

1

What does it mean to be an ‘elite’ platform team?
DevOps Research and Assessment (DORA) and SPACE 
are well-known metrics used to measure the performance 
of Platform or DevOps functions in an organisation. To be 
recognised as “elite” by DORA standards, teams need to excel 
in four specific areas:

	• Deployment frequency: How often an organisation 
successfully releases to production

	• Lead time for changes: The time it takes for a commit to 
make it into production

	• Time to restore service: How quickly organisations recover 
from a failure in production

	• Change failure rate: The percentage of changes that fail 
in production

To achieve DORA elite status, teams must meet the 
following criteria:

	• Deployment frequency: On-demand (multiple deploys 
per day)

	• Lead time for changes: Less than one day

	• Time to restore service: Less than one hour

	• Change failure rate: Less than 15%

Only about 20% of teams achieve elite status across all 
these metrics. These kinds of high-performing behaviours 
are far more common in companies that are 
technology-first, such as the tech giants and e-commerce 
players who operate without any physical retail presence. 

Take a look at some of the posts on this topic from 
household names: 

	• How Netflix Became a Master of DevOps

	• Etsy: The Secret to 50+ Deploys Each Day

	• Continuous Deployment at Facebook

	• Amazon: Automating safe, hands-off deployments

For organisations where technology isn’t the primary business 
model, achieving elite status can be much more challenging. 
As an engineering consultancy, we are often brought in 
to help non-tech-first companies – such as government 
departments, utilities, and, in this case, a major global retailer 
– to transform their digital platforms.

Of all the DORA elite metrics, achieving true continuous 
deployment – where changes merge into production on 
demand – proved to be the most difficult.

Why DORA Elite?

Most of the DORA metrics are straightforward. Nobody wants 
changes to production that break the system. If issues arise, 
you naturally want to restore service as quickly as possible. 
However, deployment frequency and lead time for changes 
can feel more alien to some teams that aren’t used to working 
in this way. Many organisations are comfortable releasing 
changes once a sprint or once a month – they follow a rigidly 
defined plan, adhere to a Change Advisory Board (CAB) 
process, and everything seems to work fine.

The problem with this approach is that releases with lots of 
changes create complexity, and complexity creates risk. By 
releasing small, frequent changes, you significantly reduce 
the risk and simplify troubleshooting.

vs

Traditional release

Increases complexity 
and risk

Frequent releases

Reduces risk and 
increases speed

https://dora.dev/
https://queue.acm.org/detail.cfm?id=3454124%20SPACE
https://www.simform.com/blog/netflix-devops-case-study/
https://www.simform.com/blog/etsy-devops-case-study/
https://medium.com/%40ThisRohanGupta/case-study-continuous-delivery-at-facebook-84b3a5f1b2e6
https://aws.amazon.com/builders-library/automating-safe-hands-off-deployments/?utm_source=chatgpt.com


Building and operating a high-performance platform for a retail organisation 2

In fact, when looking at the value added by management 
approval to releases, the DORA 2019 report highlights:

“We found that external approvals were negatively 
correlated with lead time, deployment frequency, and 
restore time, and had no correlation with change fail rate. 
Approval by an external body (such as a manager or CAB) 
simply doesn’t work to increase production stability... 
However, it certainly slows things down.”

CABs and similar processes can be valuable, especially when 
managing particularly disruptive changes. However, for many 
routine changes, organisations can benefit from streamlining 
approvals through automation and cultural shifts.

SPACE is another set of metrics that we can apply alongside 
DORA. DORA focuses primarily on deployment performance, 
SPACE by contrast measures aspects of team collaboration, 
project management, and developer productivity that are not 
directly addressed by DORA metrics.

It seems counter-intuitive at first to think that more releases make production safer. The basis of the principle is that 
the less you change at once, the less likely it is to go wrong, or that any QA process won’t have identified an issue. 

C
ha

ng
e

C
ha

ng
e

Time Time

Big-batch 
release

Frequent 
releases

Risk
Many lines 

of code
Small 

incremental 
changes

Understanding the client’s challenges

The retailer we’re working with has a huge brick and mortar 
presence – with thousands of stores across the world, but 
they were having serious issues with their legacy digital 
platform. It was a monolith with difficult monthly releases that 
required downtime and extensive manual testing.

Post-release incidents were frequent, often requiring hotfixes 
or rollbacks. Where rollbacks were required, even this wasn’t 
simple – extending the total amount of downtime while 
managing the release. 

While obviously a very poor outcome for the client, this was 
also an extremely stressful environment for the engineers to 
work in and maintain. 

The client wanted a complete re-platforming of their 
digital offering using a MACH (Microservices, API-first, 
cloud-native, headless) architecture. They also aspired 
to adopt CI/CD practices, aiming for changes to move 
from being development complete to being deployed in 
production within just 60 minutes.

The system handled a wide range of functions for the retailer:

	• Content management

	• E-Commerce

	• Product management

	• Appointment bookings

	• Store management

Different teams and suppliers worked on replacing various 
parts, with staggered timelines for replacement across 
different markets. This meant we needed a strategy to 
‘strangulate’ the monolith and decommission different parts 
of it, in different markets, at different times, depending on the 
needs of the market and the progression of the disparate 
development teams. 



3

The technical challenges
The diagram below summarises the key technical solutions that enabled us to hit those DORA elite metrics.

Building and operating a high-performance platform for a retail organisation

Ephemeral dev/test environments

Trunk-based development 
and GitOps

Azure DevOps

Feature flags and dark releases Extensive telemetry

Custom Azure functions 
in the pipeline

Automated testing in the pipeline

Zero down time releases using 
blue/green deployments

Ephemeral environments

We automated the creation and teardown of hundreds of ephemeral environments daily. Each environment was created when 
a developer proposed a change, and their change was deployed into it for testing. Automated tests ran in these environments, 
ensuring that changes met quality standards before merging into the main branch. These environments also allowed developers 
to manually test or demo their changes with stakeholders if needed. This approach eliminated the classic “well, it worked on my 
machine” excuse.

In the diagram below, the User is a developer. They all get their own environment.

Trunk-based development

We adopted trunk-based development, storing all infrastructure, configuration, and application code in Git repositories. Component 
repositories held application code and used Terraform for deployments. To maintain a clean history, we enforced strict branch 
naming rules and squash merges, linking every commit to a Jira ticket for traceability.

All branches merged into a single main branch and shared the same environments, ensuring consistency. This structure also 
allowed us to replicate environments easily – a significant advantage for deploying into new markets with slightly different 
configurations. Additionally, using Terraform ensures that any manual changes made to production are automatically reverted, 
keeping the system aligned with the desired state. This reinforces consistency and reliability in our deployments.

User B

User BUser A

Front End & Back End

Persistent Environment Ephemeral Environment

User A



4

GitOps

On the GitOps side, we bundle multiple components – along with their infrastructure and the tests that validate that infrastructure – 
into a single version representing the system as a whole.

Every change, whether it’s to the tests, configuration, infrastructure, or software, is built, bundled, and released in the same way. This 
approach provides absolute assurance to the release management team that every change to the system is tracked, versioned, 
and managed. It also simplifies the release process, as all changes follow the same procedure, allowing us to focus on technical 
concerns only when they cross system boundaries.

The way we version all components and roll them into a single whole system version makes it trivial to roll back, it also allows us to 
easily spin up ephemeral environments at a point in time and determine if a system behaviour (such as performance) changed 
between different versions. 

In the diagram below, updates to the source code trigger a pipeline, which runs a series of tasks to update runtime environments 
so they match the source.

Azure DevOps

We use Azure DevOps (ADO) to manage our pipelines, repositories, and releases, but we don’t use all of its features. Given the size 
of the client organisation and its well-established tools and ways of working, we collectively decided to align with existing practices 
rather than introduce significant changes.

So, for instance, we avoid using ADO’s project management tools, even though its integration with builds works out of the box. 
Instead, we prefer Jira, as it’s the client’s existing tool and is widely adopted. This required us to build several custom integrations 
between JIRA and ADO to improve developer productivity. For example:

	• Linking ephemeral environment URLs to Jira tickets

	• Tracking if a ticket is closed to tear down environments

	• Associating build IDs, deployment IDs and pull requests to Jira tickets 

All of our pipelines were multi-stage, and our mainline deployments included multiple environments.

Building and operating a high-performance platform for a retail organisation

Stage

Stage

Pipeline

Stage Step: Script

StepsTrigger Stage

Job

Agent

Job

Agent

Depends 
on

Job

Publish build artifact

Azure App Service deploy

Invoke REST APIStep: Task

Steps

Step: Task

Step: Task

Infrastructure 
as code

Configuration

Application 
code

“S
ou

rc
e 

of
 tr

ut
h”

CI/CD
git



5

Feature flags and dark releases

	• We used Cloudflare Workers to enable controlled routing and dark releases

	• Teams could release new journeys to production well before their official go-live date

	• The Worker router ensured that end users were only directed to the new application under specific conditions

	• This allowed us to continuously deploy into production, test internally, and ensure everything worked before a full rollout to 
end users

	• Final cutovers became trivial – all it took was flipping the routing

	• Once fully deployed feature flags also further enabled gradual rollouts of enhancements. This allowed us to make incremental 
changes safely, ensuring we could roll back quickly if necessary

This diagram, from BJSS Platform Architect Stuart Bass, shows how we use dark releases to build up an application in production 
that’s hidden and then eventually switch to it and remove the old application.

1. No toggle

Existing 
behaviour

Existing 
behaviour

OFF

2. Add toggle 
(OFF)

Existing 
behaviour

OFF

3. Incremental 
work

WIP #1

Existing 
behaviour

OFF

4. Further 
increments

WIP #1

WIP #2

Existing 
behaviour

OFF

5. Final 
increment

WIP #1

WIP #2

WIP #3
Existing 

behaviour

ON

6. Flip toggle 
(ON)

WIP #1

WIP #2

WIP #3

7. Toggle 
removed

New 
behaviour

Old 
behaviour

8. Old code 
removed

New 
behaviour

Building and operating a high-performance platform for a retail organisation



6

Zero downtime releases

To support continuous deployment without disrupting users, 
we adopted a blue/green deployment strategy. Cloudflare 
Workers managed all of our routing and directed traffic to the 
“live” version of the application while we deployed updates 
to a non-live instance. Once the updates were validated, we 
switched the traffic to the new version seamlessly.

This approach worked well but had one critical limitation; 
any changes to the Worker itself had to be made outside 
of business hours due to the significant impact they 
could cause. 

To address this, we leveraged Cloudflare’s Preview/Publish 
functionality, which allowed us to run tests on the ‘preview’ 
instance of the worker before promoting it to Production.

This functionality also proved valuable for our frontends, 
which we migrated to Cloudflare Pages from Azure Storage 
Accounts. Cloudflare’s Preview/Publish feature for Pages 
effectively provided built-in blue-green deployment. We only 
needed to ensure that our tests targeted the correct instance 
before requesting promotion to production.

The blue ‘App in Production’ is the one being used by end 
users. We deploy a new version to ‘green’ and then switch 
the routing using the Cloudflare Worker.

Automated testing

Eliminating reliance on manual testing for most changes is 
essential to increasing delivery velocity. We run tests with 
varying coverage across all environments, using different 
frameworks based on developer preference. Component tests 
are executed during application build in an ephemeral test 
environment, often numbering in the hundreds or thousands 
per workstream, providing comprehensive coverage. 

If these tests fail, the change cannot be merged into the main 
branch. The component tests are backed by real world Azure 
resources which are optimised to be spun up rapidly. This 
means we get tests on a resource which is akin to production. 

Smoke and integration tests are run on the deployed 
ephemeral environment to provide additional coverage after 
code deployment. Once merged into the main branch, smoke 
and integration tests are run on our Mainline QA environment. 

Re-running these integration tests allows us to validate any 
delta that might have crept in between the creation of the 
ephemeral test environment and the deployment into the 
mainline branch. 

Afterward, only smoke tests are executed on staging and 
production environments. These smoke tests are always run 
in a separate pipeline stage and will block deployment if 
they fail.

Various test frameworks are used, such as JEST, Selenium, 
Playwright, and Cypress, depending on the team’s 
preferences and expertise. However, the core principles of 
testing remain consistent across pipelines, regardless of the 
code being deployed or the team responsible.

Building and operating a high-performance platform for a retail organisation

Router

New version 
deployed

App in 
production



7

Custom pipeline functions

To gain the client’s approval, we agreed on a set of business processes for Continuous Deployment, which I’ll detail later. These 
processes required us to build custom software to execute within the pipeline. The key functions included:

	• A check to identify if a developer had marked their change as non-negligible in a Jira ticket, which blocked the change from 
merging into the main branch without explicit release management approval

	• A locking function to ensure that when multiple developers attempted to merge changes simultaneously, the merges would 
queue appropriately, one after the other

	• A validation function to ensure pull requests were associated with valid Jira tickets

	• A “big red button” feature, enabling both technical and non-technical users to quickly suspend continuous deployment with a 
single click, halting any further deployments to production

	• Additionally, we automated the generation of release notes, which had previously been created manually on a daily basis. This 
process was no longer feasible with multiple daily releases.

This diagram explains how our locking function works when multiple developers try and merge their changes into the same 
pipeline at the same time.

8. Pipeline 1 
tells the FA 
it’s finished

9. FA tells Pipeline 3 
it can commence 
and it will contain 

PR2 and PR3

Azure Function 
Application

Pipeline Deployment 3

3. PR2 approved
4. FA declines pipeline for 

deployment - tells it to wait

1. PR1 approved
2. FA approves pipeline

for deployment

6. FA tells Pipeline 2 to 
cancel as Pipeline 3 will 

include PR2 and PR3

5. PR3 approved

7. FA declines 
pipeline for 

deployment 
- tells it to wait

Time

Pipeline Deployment 1

Pipeline Deployment 2

Extensive telemetry

Describing the full scope of monitors across all our pipelines would require an article of its own. However, the key shift has been the 
evolution of the “release engineer” role. 

Previously, this role was responsible for managing production releases, often just approving a release with a button click. Now, the 
role focuses on responding to monitors and alerts when something goes wrong during deployment.

For example, a deployment stage might fail due to an unstable CDN or unavailable Terraform provider. Release notes may fail to 
generate if someone bypasses naming convention validation. Additionally, test failures often require investigation to identify the 
root cause.

These alerts trigger into monitored BJSS and client Teams channels. Named individuals are responsible for responding to them. 
Where the alert is set to a high severity, it can also trigger a JIRA ticket to the service desk so that we can link an event to an incident.

Building and operating a high-performance platform for a retail organisation



8

The challenges

Building a platform like this presented numerous challenges. 
As a consultancy, one of our primary concerns was managing 
costs for our client.

As the use of ephemeral environments grew, so did the 
potential for escalating costs. To control this, we downgraded 
the spec of the provisioned infrastructure to something 
closer to a Raspberry Pi, which was sufficiently performant for 
most dev/test environments. For developers requiring higher 
performance, they could select a more robust profile.

We also optimised resource usage by having ephemeral 
environments share more expensive resources. For example, 
instead of provisioning hundreds of expensive Postgres 
database servers, one for each environment, all environments 
connected to a shared server which could then provision 
databases for each environment.

This approach led us to our second major challenge; scaling. 
We encountered several limits in Azure, such as the number of 
access policies per key vault, number of permitted resource 
groups per subscription, and storage accounts permitted per 
subscription. 

To overcome this, we created pooled subscriptions across 
multiple Azure regions. Each dev/test ephemeral environment 
was provisioned in one of five pooled subscriptions, which also 
contained shared resources specific to that region.

Managing the cost of these environments required rigorous 
housekeeping. While most of the time, resources were 
properly decommissioned, the scale of daily environment 
creation meant that missed decommissioning could lead to 
significant costs over time. We introduced some key fail-safes:

	• If a branch hadn’t been updated in a few days, we would 
automatically remove the associated environment. the 
developer had 30 days to spin it back up again if needed.

	• We set up monitors and alerts for environments that had 
been active beyond a certain threshold, prompting 
manual review to determine if they were still needed. 
This also helped identify gaps in the automated 
housekeeping process.

As our team and platform grew, we had to reassess our 
structure. We split the team into two main groups, one 
focused on ‘build’ activities and the other on ‘operations.’

Implement cost 
management 

strategies
Optimise 

resource usage
Establish error 

budget
Identify cost 
challenges

Increase 
error budget

Downgrade 
infrastructure specs

Address 
scaling issues

Split team 
structure

Improve platform 
security

The distinction was fairly loose, but the key difference was that 
the ‘build’ team had protected time for long-term initiatives, 
while the ‘operations’ team was responsible for reacting to 
alerts and managing performance.

The operations team’s main responsibility was ensuring the 
performance of our test environments, associated pipelines, 
and developer experience. While they were also responsible 
for production, that environment was stable and rarely 
required intervention.

To further support the operations team, we implemented an 
error ‘budget.’ Initially set at 80%, the operations team was 
expected to drop everything and investigate if more than 
20% of dev/test environments failed to deploy. Once the root 
cause was identified, they would either fix it quickly or work 
on a longer-term solution with the build team. As we refined 
this process, our platform’s stability improved, allowing us to 
increase the budget to 95%.

We also want to continue to optimise our build and 
deployment pipeline speed. Our next major challenge at the 
time of writing this is separating our frontend and backend 
deployments for one of the major applications. At this point 
in the application’s lifecycle the vast majority of changes 
are made in the frontend and not the backend. Yet each 
deployment pushes out a brand new version of a chunky 
backend. 

By separating these, the goal is to get the frontend changes – 
over 80% of the change made on this application – to deploy 
to production within 15 minutes after it has been committed 
into the main branch. 

We now deploy to production tens of times a day, across 
multiple pipelines and development streams, into different 
subsidiary brands and markets. We also have a setup that 
makes deploying to new infrastructure regions and markets a 
relatively trivial exercise.

We supported hundreds of developers working concurrently, 
using thousands of ephemeral environments each month. 
We automatically deploy and destroy tens of thousands of 
resources every month. Our extensive monitoring allows us to 
proactively respond to scaling issues and ensure we maintain 
a stable and performant platform for our developers.

Building and operating a high-performance platform for a retail organisation



9

We’ve had no significant disruptions to production as part 
of our releases, and even minor issues are identified and 
resolved within minutes or hours – either by fixing forward or 
rolling back a single change.

Whenever I talk about Continuous Deployment at BJSS, the 
people who find it most exciting are the engineers, who want 
to discuss the technical implementation.

While I think what we’ve built is great, ultimately, there are 
many extremely talented engineering teams at BJSS and 
across the industry who can understand what we’ve built and 
replicate or tailor it to their needs.

As with all things technology and transformation, the 
implementation is only half of the story. Getting us to the 
point where we could trust automation to fully manage 
our deployments required a huge amount of influencing, 
coaching, and education – for both developers and 
managers, at BJSS and the client.

Cultural and business change
While cultural change is as crucial as the technical changes 
that helped us achieve “elite” status against the DORA 
metrics, it is deeply context dependent. Unlike technical 
implementations, which can often be replicated with 
a reasonable assurance of success, cultural shifts are 
influenced by people, their experiences, and the unique 
dynamics of their teams. That’s why cultural change is not a 
universal blueprint and isn’t easily replicable.

Every team I’ve worked with has required a tailored approach, 
and even within the same team, strategies evolve as they 
grow. Writing about this risks oversimplification, especially 
in an era where oversold one-size-fits-all solutions abound. 
What follows is a record of what worked for us in achieving 
continuous deployment (CD).

Ultimately, the biggest determinant of success was the calibre 
of people involved. At BJSS, we’re fortunate to work with 
intelligent, capable engineers, analysts, and leaders. High-
performing teams aren’t built on processes alone – they’re 
built on great people. So, before diving into specifics, I’ll say 
this: if you don’t trust your people or they lack the capability to 
take ownership of their work, no cultural change initiative will 
ever succeed.

Being set up for success

Early in the programme’s design phase, client and BJSS senior 
leaders and architects set out their vision for re-platforming 
away from the legacy system. This vision included a strong 
aspiration for continuous deployment, ensuring that the goal 
was embedded from the outset – both in the architecture of 
the applications and the underlying infrastructure that would 
deploy them.

Having the opportunity to design a greenfield platform was a 
fortunate starting point, and securing the client’s buy-in early 
was critical. 

Anyone involved in frontline delivery knows that 
implementation can sometimes diverge from the initial 
strategy. However, we gained the confidence of key senior 
technical stakeholders, and it was up to us to demonstrate 
that we could turn the strategy into reality.

By implementing the foundational technical solutions 
described above, we reached a point where we could release 
some of our pipelines daily. This achievement demonstrated 
to the client that continuous deployment wasn’t just an 
ambitious goal but an achievable one. 

While we touch on how we achieved daily releases, this 
section focuses heavily on our journey from daily releases to 
on-demand deployments – the final “elite” DORA metric we 
needed to meet.

The process

We reached a point where we were releasing daily across 
multiple pipelines for different business streams. Each 
morning, an engineer joined a call with a release manager 
to identify pipelines with changes, trigger releases, and 
monitor the process. Releases were done sequentially for 
manageability, even though parallel releases were technically 
feasible. In 95–99% of cases, these releases went smoothly. 
However, the process was frustrating: one engineer was 
effectively lost to this task for half a day every day.

Daily releases initially helped build confidence with the client’s 
release manager, who had previously overseen manual 
monthly releases that often failed. Over time, daily releases 
became routine and added little value. Despite this, human 
oversight persisted, their presence was effectively a ‘fail-safe’ 
that we’d grown accustomed to having.

Building and operating a high-performance platform for a retail organisation



10

To evolve, we needed a new process. A group comprising the client release manager, BJSS’s service management team, a platform 
architect, platform engineers, and developers from a pilot workstream came together to map out a new workflow, this is what came 
out of the workshop.

The guiding principles were:

1.	 Validation at the pull request stage: Developers could experiment freely in ephemeral environments, but merging into the main 
branch triggered validations to ensure changes were suitable for an automatic release into production

2.	 Redefining the path to live: QA, staging, and production – our path to live environments – were all treated as production-grade. 
Failures at any stage were taken seriously and investigated

3.	 Gatekeeping for non-automatable changes: We needed mechanisms to flag changes unsuitable for automation, including 
processes for managing off-peak releases requiring downtime

4.	 Emergency off-switch: A centralised, easily accessible stop mechanism was essential for halting deployments in critical 
situations. This feature was designed for both technical users and non-technical managers

5.	 Audited and automated announcements: Release notifications to the business were automated to reduce manual overhead, 
especially as release frequency increased.

Choosing the first team 

We began with a lower stakes workstream to pilot the process and the tooling for continuous deployment – the content 
management system (CMS). While content is important, its revenue impact is less direct than systems like e-commerce or 
appointment booking. A failed CMS release might inconvenience internal users but wouldn’t immediately affect the bottom line.

Crucially, the selected team already prioritised automated testing and considered ownership of the release pipeline a shared 
responsibility. They actively responded to failures, collaborated with platform engineers, and viewed daily releases as an 
inconvenience. This cultural foundation – trust, accountability, and engagement – was essential for piloting CD.

Building and operating a high-performance platform for a retail organisation



11

Building trust and going live

Rolling out our first CD deployment felt like launching a new 
product, and we approached it as such.

	• Live demos: We demonstrated the process and features to 
the release manager, including edge cases

	• Acceptance criteria: Clear criteria were established to 
validate readiness

	• Backlog management: Non-critical bugs and 
enhancements were logged for future iterations. We worked 
hard during the development phase to limit scope creep 
and stick to an MVP

	• Early life support: Nominated individuals provided focused 
support during the initial rollout phase

	• Transition to business as usual: After a stable period, 
support responsibilities rotated among the team

Treating the platform as a product helped us gain stakeholder 
trust, avoid scope creep, and focus on delivering a minimum 
viable solution. The real learning began post-launch – as with 
any product, and that’s where we wanted to focus on getting 
to. There’s a lot written out there already on treating platform 
as a product, and I could probably write a separate article on 
how we’ve tried to do this for our platform as a whole. 

Adapting to team needs 

As we rolled out CD to more teams, we tailored the process 
to their specific requirements:

Flaky tests

One of our workstreams faced a recurring issue with 
tolerated test failures. After much debate, we implemented 
a monitoring system that triggered alerts in a public Slack 
channel. These alerts tagged the last committer and 
requested an investigation into the failure.

The primary debate was whether this approach might be 
perceived as too accusatory toward individuals. Ultimately, 
we decided to emphasise the principle of ownership, a 
cornerstone of our continuous deployment strategy.

If you were the last committer and a test failed – regardless 
of whether it was caused by your change or something else 
– further deployments to the main branch were paused until 
the issue was resolved. Resolution could involve a forward 
fix, a revert, or, if it wasn’t easy to solve, convening a team to 
identify the appropriate solution.

Our priority was to avoid a culture where failures were 
dismissed as “interesting” or assumed to be someone else’s 
responsibility. This approach fostered accountability and 
significantly improved test reliability. 

Building and operating a high-performance platform for a retail organisation

High-trust environment 

Psychological safety – the freedom to express concerns, ask 
questions, and make mistakes – was critical. Continuous 
deployment can be intimidating, especially for developers 
accustomed to manual processes. We created an 
environment where developers could:

	• Repeatedly ask the same questions without fear of 
judgment. This helped us to update our documentation if it 
wasn’t clear enough for the developers

	• Feeling comfortable to mark tickets as requiring manual 
release if they felt uncertain. Even if the ticket was suitable 
for automation, this triggered a discussion and allowed us 
to work through the criteria with the developers 

	• Participate in discussions about failures and fixes to build 
confidence over time

This high-trust environment reduced anxiety, encouraged 
autonomy, and fostered collaboration between developers 
and platform engineers.

Third-party dependencies

In our staging environment, where third-party integrations 
were less stable, we implemented monitors to detect test 
failures. We had a function that paused a deployment if the 
tests failed, enabling testers to review the failure and decide 
whether to bypass it because the root cause was due to a 
faulty third-party system – the associated change did not 
require a test against that third party system.

Testers were required to justify their decisions in a dedicated 
Slack channel where they were alerted. This process kept 
change flowing at pace when failures were outside of our 
control. It also fostered discussions about the validity of the 
failure and the decision to bypass, while also prompting us to 
identify improvements to mitigate our reliance on unreliable 
third-party systems. 

Evolving roles 

The shift to CD transformed roles across the board. Release 
engineers transitioned from manual approval to responding 
to telemetry alerts. The release manager, previously heavily 
involved in daily calls, became a strong advocate for CD 
principles across the client’s organisation. Ownership of 
deployments became a shared responsibility between 
developers and platform engineers, with everyone focused on 
delivering changes safely and efficiently.

The release manager and a dedicated engineer to support 
releases became points of escalation, rather than day to day 
operators of a manual process. 



Copyright © 2025 BJSS Limited.

Lessons learned 

	• Ownership is key: Developers and platform 
engineers shared responsibility for ensuring 
changes reached production safely

	• It’s not done until it’s in production: The 
definition of done was updated. A change 
was considered complete only after merging 
into production and functioning as expected, 
rather than just merging into the main branch

	• Post-mortems drive improvement: Detailed 
reviews of incidents helped identify lessons 
and prevent recurrence

	• Documentation matters: While promoting 
interactions between people is critical, to 
achieve a stable business as usual process, 
accessible, clear documentation builds 
confidence and autonomy among developers. 
Having some basic documentation to start 
with that we could iterate on over time with 
developers as they used the platform 
was helpful.

Cultural change is as much about people as 
it is about processes. At BJSS, our success 
with continuous deployment stemmed from a 
combination of great people, a collaboratively 
designed process and an environment of trust 
and collaboration. By treating the platform as 
a product, fostering psychological safety, and 
emphasising shared ownership, we built a system 
that not only worked but excelled. 

While the specifics of our journey may not be 
universally applicable, I hope they provide some 
inspiration to move your team to use continuous 
deployment.

You can find out more about BJSS on our 
website, or get in touch here.

12

https://www.bjss.com/
https://www.bjss.com/contact-us

	2
	4

